3.2.56 \(\int \csc ^4(e+f x) (a+b \sin (e+f x)) \, dx\) [156]

Optimal. Leaf size=64 \[ -\frac {b \tanh ^{-1}(\cos (e+f x))}{2 f}-\frac {a \cot (e+f x)}{f}-\frac {a \cot ^3(e+f x)}{3 f}-\frac {b \cot (e+f x) \csc (e+f x)}{2 f} \]

[Out]

-1/2*b*arctanh(cos(f*x+e))/f-a*cot(f*x+e)/f-1/3*a*cot(f*x+e)^3/f-1/2*b*cot(f*x+e)*csc(f*x+e)/f

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 64, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {2827, 3852, 3853, 3855} \begin {gather*} -\frac {a \cot ^3(e+f x)}{3 f}-\frac {a \cot (e+f x)}{f}-\frac {b \tanh ^{-1}(\cos (e+f x))}{2 f}-\frac {b \cot (e+f x) \csc (e+f x)}{2 f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]^4*(a + b*Sin[e + f*x]),x]

[Out]

-1/2*(b*ArcTanh[Cos[e + f*x]])/f - (a*Cot[e + f*x])/f - (a*Cot[e + f*x]^3)/(3*f) - (b*Cot[e + f*x]*Csc[e + f*x
])/(2*f)

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \csc ^4(e+f x) (a+b \sin (e+f x)) \, dx &=a \int \csc ^4(e+f x) \, dx+b \int \csc ^3(e+f x) \, dx\\ &=-\frac {b \cot (e+f x) \csc (e+f x)}{2 f}+\frac {1}{2} b \int \csc (e+f x) \, dx-\frac {a \text {Subst}\left (\int \left (1+x^2\right ) \, dx,x,\cot (e+f x)\right )}{f}\\ &=-\frac {b \tanh ^{-1}(\cos (e+f x))}{2 f}-\frac {a \cot (e+f x)}{f}-\frac {a \cot ^3(e+f x)}{3 f}-\frac {b \cot (e+f x) \csc (e+f x)}{2 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 115, normalized size = 1.80 \begin {gather*} -\frac {2 a \cot (e+f x)}{3 f}-\frac {b \csc ^2\left (\frac {1}{2} (e+f x)\right )}{8 f}-\frac {a \cot (e+f x) \csc ^2(e+f x)}{3 f}-\frac {b \log \left (\cos \left (\frac {1}{2} (e+f x)\right )\right )}{2 f}+\frac {b \log \left (\sin \left (\frac {1}{2} (e+f x)\right )\right )}{2 f}+\frac {b \sec ^2\left (\frac {1}{2} (e+f x)\right )}{8 f} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]^4*(a + b*Sin[e + f*x]),x]

[Out]

(-2*a*Cot[e + f*x])/(3*f) - (b*Csc[(e + f*x)/2]^2)/(8*f) - (a*Cot[e + f*x]*Csc[e + f*x]^2)/(3*f) - (b*Log[Cos[
(e + f*x)/2]])/(2*f) + (b*Log[Sin[(e + f*x)/2]])/(2*f) + (b*Sec[(e + f*x)/2]^2)/(8*f)

________________________________________________________________________________________

Maple [A]
time = 0.25, size = 61, normalized size = 0.95

method result size
derivativedivides \(\frac {a \left (-\frac {2}{3}-\frac {\left (\csc ^{2}\left (f x +e \right )\right )}{3}\right ) \cot \left (f x +e \right )+b \left (-\frac {\csc \left (f x +e \right ) \cot \left (f x +e \right )}{2}+\frac {\ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right )}{2}\right )}{f}\) \(61\)
default \(\frac {a \left (-\frac {2}{3}-\frac {\left (\csc ^{2}\left (f x +e \right )\right )}{3}\right ) \cot \left (f x +e \right )+b \left (-\frac {\csc \left (f x +e \right ) \cot \left (f x +e \right )}{2}+\frac {\ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right )}{2}\right )}{f}\) \(61\)
risch \(\frac {3 b \,{\mathrm e}^{5 i \left (f x +e \right )}+12 i a \,{\mathrm e}^{2 i \left (f x +e \right )}-4 i a -3 b \,{\mathrm e}^{i \left (f x +e \right )}}{3 f \left ({\mathrm e}^{2 i \left (f x +e \right )}-1\right )^{3}}+\frac {b \ln \left ({\mathrm e}^{i \left (f x +e \right )}-1\right )}{2 f}-\frac {b \ln \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )}{2 f}\) \(98\)
norman \(\frac {-\frac {a}{24 f}-\frac {5 a \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{12 f}+\frac {5 a \left (\tan ^{6}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{12 f}+\frac {a \left (\tan ^{8}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{24 f}-\frac {b \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{8 f}+\frac {b \left (\tan ^{7}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{8 f}-\frac {b \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{4 f}}{\tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{3} \left (1+\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}+\frac {b \ln \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2 f}\) \(152\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)^4*(a+b*sin(f*x+e)),x,method=_RETURNVERBOSE)

[Out]

1/f*(a*(-2/3-1/3*csc(f*x+e)^2)*cot(f*x+e)+b*(-1/2*csc(f*x+e)*cot(f*x+e)+1/2*ln(csc(f*x+e)-cot(f*x+e))))

________________________________________________________________________________________

Maxima [A]
time = 0.28, size = 79, normalized size = 1.23 \begin {gather*} \frac {3 \, b {\left (\frac {2 \, \cos \left (f x + e\right )}{\cos \left (f x + e\right )^{2} - 1} - \log \left (\cos \left (f x + e\right ) + 1\right ) + \log \left (\cos \left (f x + e\right ) - 1\right )\right )} - \frac {4 \, {\left (3 \, \tan \left (f x + e\right )^{2} + 1\right )} a}{\tan \left (f x + e\right )^{3}}}{12 \, f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^4*(a+b*sin(f*x+e)),x, algorithm="maxima")

[Out]

1/12*(3*b*(2*cos(f*x + e)/(cos(f*x + e)^2 - 1) - log(cos(f*x + e) + 1) + log(cos(f*x + e) - 1)) - 4*(3*tan(f*x
 + e)^2 + 1)*a/tan(f*x + e)^3)/f

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 140 vs. \(2 (63) = 126\).
time = 0.34, size = 140, normalized size = 2.19 \begin {gather*} -\frac {8 \, a \cos \left (f x + e\right )^{3} - 6 \, b \cos \left (f x + e\right ) \sin \left (f x + e\right ) + 3 \, {\left (b \cos \left (f x + e\right )^{2} - b\right )} \log \left (\frac {1}{2} \, \cos \left (f x + e\right ) + \frac {1}{2}\right ) \sin \left (f x + e\right ) - 3 \, {\left (b \cos \left (f x + e\right )^{2} - b\right )} \log \left (-\frac {1}{2} \, \cos \left (f x + e\right ) + \frac {1}{2}\right ) \sin \left (f x + e\right ) - 12 \, a \cos \left (f x + e\right )}{12 \, {\left (f \cos \left (f x + e\right )^{2} - f\right )} \sin \left (f x + e\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^4*(a+b*sin(f*x+e)),x, algorithm="fricas")

[Out]

-1/12*(8*a*cos(f*x + e)^3 - 6*b*cos(f*x + e)*sin(f*x + e) + 3*(b*cos(f*x + e)^2 - b)*log(1/2*cos(f*x + e) + 1/
2)*sin(f*x + e) - 3*(b*cos(f*x + e)^2 - b)*log(-1/2*cos(f*x + e) + 1/2)*sin(f*x + e) - 12*a*cos(f*x + e))/((f*
cos(f*x + e)^2 - f)*sin(f*x + e))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (a + b \sin {\left (e + f x \right )}\right ) \csc ^{4}{\left (e + f x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)**4*(a+b*sin(f*x+e)),x)

[Out]

Integral((a + b*sin(e + f*x))*csc(e + f*x)**4, x)

________________________________________________________________________________________

Giac [A]
time = 0.49, size = 122, normalized size = 1.91 \begin {gather*} \frac {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} + 3 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 12 \, b \log \left ({\left | \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) \right |}\right ) + 9 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - \frac {22 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} + 9 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 3 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + a}{\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3}}}{24 \, f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^4*(a+b*sin(f*x+e)),x, algorithm="giac")

[Out]

1/24*(a*tan(1/2*f*x + 1/2*e)^3 + 3*b*tan(1/2*f*x + 1/2*e)^2 + 12*b*log(abs(tan(1/2*f*x + 1/2*e))) + 9*a*tan(1/
2*f*x + 1/2*e) - (22*b*tan(1/2*f*x + 1/2*e)^3 + 9*a*tan(1/2*f*x + 1/2*e)^2 + 3*b*tan(1/2*f*x + 1/2*e) + a)/tan
(1/2*f*x + 1/2*e)^3)/f

________________________________________________________________________________________

Mupad [B]
time = 6.74, size = 111, normalized size = 1.73 \begin {gather*} \frac {3\,a\,\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}{8\,f}+\frac {a\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^3}{24\,f}+\frac {b\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^2}{8\,f}+\frac {b\,\ln \left (\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )\right )}{2\,f}-\frac {{\mathrm {cot}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^3\,\left (3\,a\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^2+b\,\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )+\frac {a}{3}\right )}{8\,f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*sin(e + f*x))/sin(e + f*x)^4,x)

[Out]

(3*a*tan(e/2 + (f*x)/2))/(8*f) + (a*tan(e/2 + (f*x)/2)^3)/(24*f) + (b*tan(e/2 + (f*x)/2)^2)/(8*f) + (b*log(tan
(e/2 + (f*x)/2)))/(2*f) - (cot(e/2 + (f*x)/2)^3*(a/3 + b*tan(e/2 + (f*x)/2) + 3*a*tan(e/2 + (f*x)/2)^2))/(8*f)

________________________________________________________________________________________